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Eye biometry prediction from ultrasound images 
using convolutional neural networks

Abstract

Medical imaging is important in clinical diagnosis and individu-
alized treatment of eye diseases. Ultrasound imaging is one of the 
most prominent technologies to evaluate the orientations, anoma-
lies and anatomical features of the eye and orbit. However, the 
interpretation of the data obtained from such studies is best left to 
expert physicians and technicians who are trained and well-versed 
in analyzing such images. This technology can provide high-reso-
lution information regarding anatomic and functional changes. In 
recent years, imaging techniques have developed rapidly, together 
with therapeutic advances. However, with the increasing sophisti-
cation of imaging technology, comprehension and management of 
eye disease has become more complex due to the large numbers 
of images and findings that can be recorded for individual patients, 
as well as the hypotheses supported by these data. Thus, each pa-
tient has become a “big data” challenge. Conventional diagnostic 
methods greatly depend on physicians’ professional experience 
and knowledge, which can lead to a high rate of misdiagnosis and 
wastage of medical data [6]. The new era of clinical diagnostics and 
therapeutics urgently requires intelligent tools to manage medical 
data safely and efficiently.

Introduction

There are different ways for ultrasound-based diagnostic 
procedures. Depending on the application, the sonographer 
acquires either a single image or an image series. The second 
approach is better when a further automated image-process-
ing step is introduced. Simultaneous analysis of multiple data 
provides reliable results, less prone to artifacts and outliers. At 
the same time, the analysis of the whole recording might be 
disturbed by strongly distorted data or the artifacts influenc-
ing the geometry of visualized structures, appearing on the 
part of frames. Consequently, it leads to misclassification, false-

positive detections, and finally, inaccurate results of measure-
ments. Therefore, the overall goal of this study was to develop 
and evaluate the classification framework, which enables ro-
bust and fast POCUS series analysis. Ocular ultrasonography in 
the ambulatory and critical care setting has become an invalu-
able diagnostic tool for patients presenting with traumatic or 
atraumatic vision and ocular complaints. Sonographic bedside 
evaluation is intuitive and easy to perform and can accurately 
diagnose a variety of pathologies. These include detachment or 
hemorrhage of the retina or vitreous, lens dislocation, retrobul-
bar hematoma or air, as well as ocular foreign bodies, infections, 
tumors, and increased optic nerve sheath diameter that can be 
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assessed in the setting of suspected increased intracranial pres-
sure. The ocular anatomy is easy to visualize with sonography, 
as the eye is a superficial structure filled with fluid. Over the last 
two decades, many scientific publications have documented 
that ocular ultrasound in emergent or critical care settings is an 
accurate diagnostic tool and expands and improves emergency 
diagnosis and management. 

Research methodology

Significance: There is an abundance of ultrasound datasets 
for various use-cases, which can be used to generate DNN-
based models for classification and segmentation. For instance, 
the breast ultrasound image dataset presented by Al-Dhabyani 
et al. (Al-Dhabyani et al., 2020), which is composed of normal, 
benign, and malignant images that can be used to train to a 
model to act as a classifier. Similarly, the POCUS dataset, pre-
sented by Born et al. (Born et al., 2020), and the COVIDX-US 
dataset, by Ebadi et al. (Ebadi et al., 2021), are openly accessi-
ble for building DNN-based clinical assistants that can aid in the 
analytics and diagnosis of COVID19. Leclerc et al. (Leclerc et al., 
2019) presented a cardiac ultrasound electrocardiography da-
taset containing image sequences with two and four-chamber 
views of the heart of 500 patients. Likewise, there are a wide 
number of ultrasound datasets for diagnosing and analyzing 
several internal bodies’ organs.

Innovation: The required ultrasound data was generated and 
collected using ocular phantom tissue, which has been typically 
used to train sonographers to assess the development and con-
dition of the eye. The eye model includes anatomical structure 
and key organic features that can be observed and used to train 
the sonographer to assess the eye anatomy (like vertical and 
horizontal meridians, circumferences, area and volume) and in-
ternal orbit structures (like lacrimal gland, optic nerve, muscles 
and blood vasculature, etc.). The biometric parameters of the 
eye can also be measured/learned using an ultrasound of the 
eye phantom at the appropriate positions or the correct diag-
nostic planes. We use the butterfly IQ plus, which is interfaced 
with 3D facilities to collect and process the data and generate 
the final ultrasound image. The Anatomically Intelligent Ultra-
sound (AIUS) imaging technology deploys, an Ultrasound Phan-
tom Dataset with DNN evaluations advanced organ modeling 
and imaging techniques to generate a three-dimensional image 
of the ocular phantom using the default settings for the “Oph-
thalmology” imaging option. The imaging depth was set to 5 cm 
and captured at a 10 Hz frame rate. Sufficient ultrasound gel 
is applied on the phantom model to ensure acoustic coupling 
with the probe, thereby reducing acoustic impedance, and en-
abling clear imaging. We executed two protocols to collect the 
images used in this dataset [1]. Protocol-I the probe is placed 
on the phantom surface and navigated to the correct diagnostic 
planes that can be used for the measurement of the three pri-
mary biometric parameters of the eye, namely the horizontal 
plane, which is used to obtain the transverse diameter), vertical 
standard plane, which is used to estimate the eye circumfer-
ence, and the sagittal standard plane, which is used to estimate 
the optic nerve diameter. The correct diagnostic planes were 
identified using the proposed research protocol.  To further en-
rich the dataset, after the acquisition of several frames at the 
correct diagnostic plane, we tilt, rotate, or traverse the ultra-

Approach

Background and justification: The data streams obtained 
by the butterfly ultrasound system are converted to PNG im-
age sequences, of dimension 664x388, using custom in-house 
software for easier labeling, annotating, and processing. The 
stored PNG files are annotated using a customized version of 
the computer vision annotation tool -Desmos which is an online 
interactive graphing calculator utilized in this study to measure 
the desired dimensions of the eyeball. The salient features of 
this online program include the ability to pre-populate a plot 
with the necessary formulas to calculate the diameters, circum-
ference, and area of the eyeball, which was treated like a simple 
ellipse. A template program was created, and the ultrasound 
images were each uploaded to the program and the coefficients 
were manipulated to yield manual readings of the dimensions. 
The ultrasound images were superimposed onto the graph to 
scale.

Each acquired ultrasound frame was subsequently anno-
tated by scientists with experience in eye ultrasound imaging. 
The sequences obtained using Protocol-I are labeled as a cor-
rect diagnostic plane for one of the three biometric parameters 
or as a non-diagnostic plane. Since the number of data samples 
obtained for each of the diagnostic planes is quite smaller than 
the non-diagnostic plane output class, the samples were aug-
mented in each of the other three output classes to ensure 

sound probe in random directions to collect more information 
[2]. Protocol-II: The focus of this protocol is to obtain images 
capturing the anatomies of the eye phantom in the generated 
images. We do this by navigating the probe to obtain the lacri-
mal gland, optic nerve, muscles and orbital fats, individually or 
combined, in the picture and move the probe in different di-
rections to obtain a heterogeneous set of images capturing the 
orbital anatomies. Furthermore, the phantom tissue model was 
also rotated and placed in the four possible orientations [head 
up or down, view front or back, when collecting the ultrasound 
data, to potentially mimic the real-life behavior of anatomical 
orientation and presentation. Additionally, the probe orienta-
tion was also changed between horizontal and vertical, with re-
spect to the midline, when the data was collected to enhance 
the dataset with more information.



www.jclinmedimages.org	     		  Page 3

equal representation of data across all classes. The data ob-
tained using Protocol-II is, first, labeled with eye orientations, as 
discussed earlier, based on the position of the phantom midline 
when the scans are made. Next, the images are tagged with the 
anatomies present in the image, such as lacrimal gland, optic 
nerve, muscles and orbital fat. The images are subsequently ex-
haustively annotated. Images that do not contain any vital and/
or relevant information regarding the orbital structures are not 
labeled or annotated. These finalized labels and annotations, 
for each valid image in the dataset, can be used to train various 
deep learning models as required. 

Preliminary studies and feasibility: We analyzed a dataset 
consisting of 107 ultrasound images of eyes captured with the 
Butterfly iQ+ ultrasound probe. Of these images, 77 are taken 
from typical/healthy patients, While 30 are taken from eyes 
with known abnormalities. The goal is to utilize a convolutional 
neural network (CNN) to predict both the vertical and horizon-
tal diameter of each eye, removing the need for the costly pro-
cedure of expert analysis of images.

Research design: The dataset is split into a training and val-
idation set as follows. For the typical images, we perform an 
80/20 split, so that 64 images are used for training and 13 are 
used for validation. For the atypical images, we allot 20 to the 
training set and 10 to the test set, in order to ensure that there 
sufficiently many atypical images in the validation set. The train-
ing and validation datasets are much smaller than those typi-
cally used when training a CNN. As a result, we investigated the 
use of various forms of image augmentation. However, we did 
not find any augmentation to be beneficial to the training pro-
cess. We note that, in contrast to images of typical objects (e.g., 
dogs, cars), ultrasound images have distinct spatial structure, 
With the main image having a specific orientation and an objec-
tive scale on the right side. This fact may account for the lack of 
benefit seen, and further investigation with larger labeled da-
tasets is a topic of future research. Our model is based on the 
Network-in-Network (NiN) structure [1], which utilizes 1×1 con-
volutions to aggregate information across image channels with-
out destroying spatial structure. While we experimented with 
other network types, we found that any network employing 
linear layers ultimately learned the median value of the data-
set. However, we note that the choice of network structure may 
vary as more images are considered in the training set. Each 
NiN block consists of [1] a convolutional layer of arbitrary kernel 
size followed by a rectified linear unit (ReLU) (2) A 1×1 convo-
lutional layer followed by a ReLU, and (3) A second 1×1 convo-
lutional layer followed by batch normalization and a ReLU. The 
first convolutional layer of each NiN block learns filters of user-
specified size to detect the salient features in the image, while 
the subsequent two 1×1 convolutional layers act as nonlinear 
predictions for each pixel across all image channels. In this way, 
the NiN block performs convolution and a nonlinear transfor-
mation without destroying spatial structure. For our model, we 
use four NiN blocks with 96 output channels (filters) each. The 
first layer uses a kernel size of 11×11, while the next three use 
5×5 kernels. A final NiN block consists of two output channels 
using kernel size 3×3, and the final prediction is performed by 
a global average pooling over each channel. The first channel 
corresponds to prediction of vertical diameters, while the sec-
ond corresponds to horizontal diameters. We train the above 
network using the mean absolute error (MAE), optimized using 
Adam [2] with a learning rate of 0.01 over 1000 epochs.

Figure 1: Training and validation loss for proposed NiN-based net-
work.

Figure 2 shows a scatter plot of the true and predicted diam-
eters for (a) The training dataset and (b) The validation dataset. 
The figure shows that the network can accurately capture the 
training data while still generalizing to the validation set. For the 
validation data, we see that the network overpredicts the small-
est horizontal diameters (bottom left points in Figure 2(b)).

Figure 2: Scatter plots of true and predicted diameters for (a) train-
ing and (b) validation data. The results on validation data show the 
algorithm performs worst on outlying points with the smallest and 
largest diameters.

Expected outcomes 

Figure 1 shows the training and validation error versus ep-
och. Interestingly, even for a very large number of epochs, the 
validation loss does not appear to diverge greatly from the 
training loss. This is likely due to the homogeneity of the train-
ing and validation sets, in which the images are very similar. 
We note that a more careful consideration of overfitting may 
be necessary when larger training and validation sets become 
available. The final validation MAE is 0.0925, corresponding to a 
relative error of 3.96%. For comparison, a simple algorithm that 
always predicts the median diameters of the training set results 
in a validation error of 8.72%, indicating that our trained net-
work learns nontrivial predictions corresponding to the actual 
images, even from this small dataset.
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Figure 3: Ultrasound images corresponding to four most accurate 
predictions in validation set. Relative errors range from 0.12%-
0.71%. The images all contain eye images with clearly identified 
boundaries.

 
Figure 4: Ultrasound images corresponding to the four least accu-
rate predictions in validation set. Relative errors are 5.03%, 6.90%, 
8.59%, and 30.09% (left to right, top to bottom). Failed predictions 
are likely due to lack of clear visual boundaries (first three images) 
or a different ultrasound field (fourth image).

To gain insight into our network, we visualize the learned 
representations (feature maps) at the intermediate and output 
layers of the network. Figure 5 shows example feature maps at 
the output of the first four NiN blocks for the most accurately 
predicted image (Figure 3, top left). We see that the first NiN 
block performs broad-scale feature learning, picking out edges 
of various orientations and discovering contrasting regions. The 
second block appears to perform some smoothing, reducing 
the variation in locations away from the eyeball. The third block 
outlines both the eyeball and the ultrasound field, smoothing 
all other regions. Finally, the fourth block further refines and 
smooths these estimates. Figure 6 shows the same outputs 
for the lowest-accuracy prediction (Figure 4, bottom right). We 
note that the true vertical and horizontal diameters for this im-
age are 20 mm and 20 mm, while the predicted diameters are 
25 mm and 27 mm. The feature maps show that the model fails 
to determine the outline of the eyeball, and perhaps mistakes 
the outline of the ultrasound field for the eyeball in Figure 6(d), 
which would explain the upward bias in the prediction for this 
image. Finally, we consider a network saliency map obtained 
by guided backpropagation [3], which aims to determine which 
parts of the input image had the greatest impact on the final 
prediction by examining the gradients corresponding to each 
pixel location. For visualization purposes, we normalize all val-
ues and set values greater than 0.01 to 0.5; hence the resulting 
heatmaps do not indicate the strength of influence of each pix-
el. Figure 7 shows the saliency maps for the four most accurate 
images, while Figure 8 shows the maps for the worst four pre-
dictions. Red locations correspond to pixels that have greater 
influence over the model predictions. 

 

Figure 5: Feature maps output by each NiN block for lowest-error 
image. (a) First NiN block, (b) Second block, (c) Third block, (d) 
Fourth block. At the fourth layer, the network appears to learn the 
boundary of the ultrasound field, long with an outline of the eye.

 These points likely correspond to images of atypical sce-
narios, for which there is less training data. Figure 3 shows the 
images corresponding to the four most accurate predictions. 
In all cases, the entire eyeball is within the frame and largely 
surrounded by contrasting tissue, with the lens clearly visible. 
Figure 4 shows the images corresponding to the worst four pre-
dictions. In this case, we see that images either have cloudiness 
within the eyeball region or dark regions that make it difficult 
to clearly delineate the boundary of the eyeball. We note that 
the worst two predictions correspond to the largest and small-
est examples in the dataset, indicating that the algorithm is bi-
ased toward typical eyeball sizes. In the most extreme example 
(Figure 4, right image), we see that the ultrasound scan covers 
much more of the image than other examples in the dataset, 
Ithat the model had a difficult time determining the absolute 
scale of the eye.
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Figure 6: Feature maps output by each NiN block for highest-er-
ror image. (a) First NiN block, (b) Second block, (c) Third block, 
(d) Fourth block. The third- and fourth-layer outputs indicate the 
model may have mistaken the ultrasound field for the eye, result-
ing in the high prediction for this image.

 
Figure 7: Saliency maps (via guided backpropagation) correspond-
ing to four most accurate predictions in validation set. The model 
appears to determine the bounds of the ultrasound field, as well 
as the relative size of the eyeball within these bounds.

Figure 8: Saliency maps (via guided backpropagation) correspond-
ing to four least accurate predictions in validation set. The model 
appears to either have trouble determining extremal points of the 
eyeball (bottom left) or bounds on the area of interest within the 
image (bottom right).

Potential problems and alternative strategies: For the top 
four images, as well as the best two of the worst four predic-
tions, we see that the network focuses on bounding the ul-
trasound field as well as on a few extremal points within the 
eyeball itself. For the worst two predictions (Figure 8, bottom 
row), we see that the model fails to determine the boundaries 
of either the eyeball or of the ultrasound field. Overall, we see 
that the network seeks to determine bounds around the region 
of interest within the image, which may provide a global scale, 
as well as a few points within the eyeball, which provide the 
relative size. Together, these result in the successful predictions 
reported above.

Future directions

Relevant ocular ultrasound experience to obtain informa-
tion regarding the [1] Diagnostic plane, [2] Eye orientation, (3) 
Ocular anatomy, and [4] their anomalies, using box annotations. 
The generated dataset is used to train a variety of deep learn-
ing models to illustrate the model’s ability to extract vital infor-
mation, which can be used to accurately distinguish among an 
Ultrasound Phantom Dataset with DNN evaluations the classes 
in different categories and detect the anomalies. Furthermore, 
To evaluate their deployability in portable resource-constrained 
devices, we evaluated the capability of a smaller DNN com-
pressed using pruning and quantization to illustrate that smaller 
DNNs are equally competent at extracting relevant information 
from the dataset and are capable of execution on resource-con-
strained devices and embedded platforms.
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