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Abstract

This research presents a computational analysis of neural action potentials using
the Hodgkin-Huxley model. We implement numerical simulations to investigate the
dynamics of membrane potentials and ion channel behaviors under various stimuli.
Our results demonstrate the model’s capability to accurately reproduce key neuro-
physiological phenomena, including action potential generation, threshold behavior,
and spike train dynamics. The analysis provides insights into the fundamental mech-
anisms underlying neural signal propagation and the relationship between stimulus
characteristics and neuronal response patterns.

1 Introduction
The Hodgkin Huxley model describes the electrical behavior of neurons by simulating
the dynamics of ion channels in the cell membrane. This model is crucual in under-
standing both the generation and propogation of action potentials in neurons. The
idea is that a membrane can be treated as a capacitor where CV = q, and thus the
time rate of change in the membrane potential V is proportional to the current dq/dt
flowing through the membrane.

The current is due to the flow of sodium and potassium ions through voltage-gated
channels in the membrane, leakage current, and external current stimulus. Its applica-
tions are ubiqitous–in fact, it was originally developed to explain the action potentials
of the giant axon of the squid.

1.1 The Hodgkin-Huxley Model
The model itself is described by four differential equations that govern the dynamics
of the membrane potential and the gating variables of the sodium and potassium
channels. The model is defined by four equations, the first of which is the membrane
potential equation:

Cm
dV

dt
= −ḡNam

3h(V − ENa) − ḡKn
4(V − EK) − gL(V − EL) + Iext (1)

In addition, there are three auxiliary equations for the gating variables n, m, and
h. Those equations are as follows:

dn

dt
= αn(V)(1 − n) − βn(V)n

dm

dt
= αm(V)(1 −m) − βm(V)m

dh

dt
= αh(V)(1 − h) − βh(V)h

(2)
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1.1.1 Model Parameters

Variable Description
Cm Membrane capacitance per unit area, representing the ability of

the membrane to store charge. It acts as a scaling factor for the
rate of change of the membrane potential, V .

V Membrane potential, the voltage difference across the neuronal
membrane, which varies over time due to ionic currents.

ḡNa Maximum conductance of the sodium channel. It represents the
highest possible flow rate of sodium ions through the channel.

m Activation gating variable for sodium channels. It determines
the probability of the sodium channel being open, raised to the
power of 3 for a cubic dependency.

h Inactivation gating variable for sodium channels. It reflects the
probability of the sodium channel being closed due to inactiva-
tion.

ENa Sodium equilibrium potential, the voltage at which there is no
net flow of sodium ions across the membrane.

ḡK Maximum conductance of the potassium channel. It represents
the highest possible flow rate of potassium ions through the chan-
nel.

n Activation gating variable for potassium channels. It determines
the probability of the potassium channel being open, raised to the
power of 4 for a quartic dependency.

EK Potassium equilibrium potential, the voltage at which there is no
net flow of potassium ions across the membrane.

gL Leakage conductance. It accounts for non-specific ionic leakage
across the membrane.

EL Leakage equilibrium potential, the voltage at which leakage cur-
rents are balanced.

Iext External current applied to the neuron. This term represents the
influence of external electrical stimuli on the membrane potential.

αn(V), βn(V) Voltage-dependent rate constants for the activation gating vari-
able n. They determine the opening and closing rates of the
potassium channel.

αm(V), βm(V) Voltage-dependent rate constants for the activation gating vari-
able m. They determine the opening and closing rates of the
sodium activation gates.

αh(V), βh(V) Voltage-dependent rate constants for the inactivation gating vari-
able h. They determine the opening and closing rates of the
sodium inactivation gates.

Table 1: Descriptions of variables in the Hodgkin-Huxley model.
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1.2 Objectives
The primary goal of this research is to explore the dynamics of neural action potentials
using the Hodgkin-Huxley model. Specifically, the study addresses the following
questions in detail:

• What is the steady-state behavior of the model under zero external current con-
ditions? This involves analyzing the system’s baseline dynamics by simulating
the membrane potential V(t) using the Euler-Cromer method when there is no
external current. This steady-state analysis serves as a foundational benchmark
for understanding the natural behavior of the neuron.

• What does a single action potential look like in response to a threshold stimu-
lus? The study simulates the response of the neuron to a short-duration stimulus
with a 10 µA/cm2 current. This analysis identifies the threshold current required
to generate an action potential and examines the detailed dynamics of the voltage
spike.

• How does the firing frequency of the neuron depend on the intensity of the
stimulus? By applying constant current inputs of varying amplitudes, the re-
search explores how stimulus intensity influences the frequency and regularity
of spike trains. This includes determining the threshold for repetitive firing and
analyzing how spike intervals change with different levels of stimulus amplitude.

• What are the effects of step changes in current on the firing pattern? The study
implements a two-phase current input, starting with an initial current I1 applied
for 20 ms, followed by a step change to I2 = I1 + δI. Four specific cases are
examined:

– I1 = 4µA, δI = 2.0µA
– I1 = 4µA, δI = 10.0µA
– I1 = 8µA, δI = 2.0µA
– I1 = 8µA, δI = 10.0µA

The resulting firing patterns are classified into distinct response types, and the
behavior is mapped across the parameter space to understand the system’s dy-
namics under varying conditions.

2 Method

2.1 Algorithm Implementation
2.1.1 Gate Variables

First, functions are defined to calculate ion channel gate variables. We include alpha
and beta rate constants for n, m, and h. One example function is given below:

def alpha_n(V):
"""Potassium activation rate."""
return 0.01 * (V + 55) / (1 - np.exp(-(V + 55) / 10))
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These functions use well-established equations to calculate the rate constants for the
gate variables. The functions are then used in the Hodgkin-Huxley model to calculate
the derivatives of the gate variables.

2.1.2 Integration Methods

Next, we define our numerical integration methods. In this project, the only method
used was the Runge-Kutta (RK4) method. The RK4 method is a fourth-order numerical
integration method. The test functions are not ran many times, so the computational
cost of the RK4 method is not a concern. It was chosen for its accuracy, being a
fourth-order method. The function is given below:

def runge_kutta(func, y0, t_span, dt):
t = np.arange(t_span[0], t_span[1], dt)
y = np.zeros((len(t), len(y0)))
y[0] = y0

for i in range(1, len(t)):
k1 = dt * func(t[i-1], y[i-1])
k2 = dt * func(t[i-1] + dt/2, y[i-1] + k1/2)
k3 = dt * func(t[i-1] + dt/2, y[i-1] + k2/2)
k4 = dt * func(t[i-1] + dt, y[i-1] + k3)
y[i] = y[i-1] + (k1 + 2*k2 + 2*k3 + k4) / 6

return t, y

2.1.3 Visualization Functions

A set of specialized visualization functinos was created to facilitate analysis of the
model’s behavior and output.

The primary function plots membrane potential over time. This function incor-
porates optional visualization of an external current simuli to allow analysis of the
model’s behavior under different stimuli.

def plot_membrane_potential(t, V, title="Membrane Potential",
I_ext=None):

"""Plot membrane potential over time with optional current
stimulus."""

# Create figure with appropriate number of subplots based on I_ext
if I_ext is not None:
fig, (ax1, ax2) = plt.subplots(
2, 1,
figsize=(10, 8),
sharex=True

)
else:
fig, ax1 = plt.subplots(
1, 1,
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figsize=(10, 6),
sharex=True

)

ax1.plot(t, V)
ax1.set_title(title)
ax1.set_ylabel("Membrane Potential (mV)")
ax1.grid(True)

if I_ext is not None:
ax2.plot(t, I_ext)
ax2.set_xlabel("Time (ms)")
ax2.set_ylabel("External Current (muA/cm squared)")
ax2.grid(True)

else:
ax1.set_xlabel("Time (ms)")

plt.tight_layout()
return fig

Subsequently, an analysis function was implemented to visualize the dynamic
becahior of the gate variables. This function plots the gate variables n, m, and h over
time. The function is given below:

def plot_gate_variables(t, n, m, h):
"""Plot gate variables over time."""
#use subplot to plot multiple plots in the same figure
fig, axs = plt.subplots(3, 1, figsize=(10, 8), sharex=True)
axs[0].plot(t, n, label=’n (K+ activation)’)
axs[0].set_ylabel("Probability")
axs[0].grid(True)
axs[0].legend()

axs[1].plot(t, m, label=’m (Na+ activation)’)
axs[1].set_ylabel("Probability")
axs[1].grid(True)
axs[1].legend()

axs[2].plot(t, h, label=’h (Na+ inactivation)’)
axs[2].set_xlabel("Time (ms)")
axs[2].set_ylabel("Probability")
axs[2].grid(True)
axs[2].legend()

return plt.gcf()

A steady state analysis function was developed to examine the behavior of state
variables under varying conditions. This function plots the steady state values and
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time constants of the gate variables n, m, and h as a function of membrane potential.
The function is given below:

def plot_steady_states(V_range):

from .gates import (n_infinity, m_infinity, h_infinity,
tau_n, tau_m, tau_h)

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))

# Plot steady states
ax1.plot(V_range, n_infinity(V_range), label=’n infinity’)
ax1.plot(V_range, m_infinity(V_range), label=’m infinity’)
ax1.plot(V_range, h_infinity(V_range), label=’h infinity’)
ax1.set_title("Steady State Values")
ax1.set_xlabel("Membrane Potential (mV)")
ax1.set_ylabel("Steady State Value")
ax1.grid(True)
ax1.legend()

# Plot time constants
ax2.plot(V_range, tau_n(V_range), label=’tau n’)
ax2.plot(V_range, tau_m(V_range), label=’tau m’)
ax2.plot(V_range, tau_h(V_range), label=’tau h’)
ax2.set_title("Time Constants")
ax2.set_xlabel("Membrane Potential (mV)")
ax2.set_ylabel("Time Constant (ms)")
ax2.grid(True)
ax2.legend()

plt.tight_layout()
return fig

2.1.4 The Hodgkin-Huxley Model

The Hodgkin-Huxley model itself was implemented as a class. This allows for easy
user interaction with the model, and permits modular use of the model in other
programs.

The model class has several functions which allow the user to interact in a modular
way with the model. This allows the user to import the model and run simulations
with ease:

Hodgkin-Huxley Model Class Functions

• init: This function initializes the model parameters and state variables to stan-
dard values.
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• reset_state: This function resets the state variables to their resting conditions.
• dV_dt: This function calculates the derivative of the membrane potential.
• dn_dt, dm_dt, dh_dt: These functions calculate the derivatives of the gate vari-

ables n, m, and h, respectively.
• derivatives: This function calculates all derivatives for the current state. Returns

an array of derivatives.
• simulate: This function runs the simulation for a given time span and external

current function. Returns the membrane potential and gate variables over time.

—

class HodgkinHuxleyModel:
def __init__(self):
# Model parameters
self.C_m = 1.0 # Membrane capacitance (mu F/cm^2)
self.g_Na = 120.0 # Sodium conductance (mS/cm^2)
self.g_K = 36.0 # Potassium conductance (mS/cm^2)
self.g_L = 0.3 # Leak conductance (mS/cm^2)
self.E_Na = 55.0 # Sodium reversal potential (mV)
self.E_K = -77.0 # Potassium reversal potential (mV)
self.E_L = -54.4 # Leak reversal potential (mV)

# Initial conditions
self.reset_state()

def reset_state(self):
"""Reset state variables to resting conditions."""
self.V = -65.0 # Initial membrane potential (mV)
self.n = n_infinity(self.V) # Initial potassium activation
self.m = m_infinity(self.V) # Initial sodium activation
self.h = h_infinity(self.V) # Initial sodium inactivation

def dV_dt(self, V, n, m, h, I_ext=0):
"""Calculate membrane potential derivative."""
I_Na = self.g_Na * m**3 * h * (V - self.E_Na)
I_K = self.g_K * n**4 * (V - self.E_K)
I_L = self.g_L * (V - self.E_L)
return (I_ext - I_Na - I_K - I_L) / self.C_m

def dn_dt(self, V, n):
"""Calculate potassium activation derivative."""
return alpha_n(V) * (1 - n) - beta_n(V) * n

def dm_dt(self, V, m):
"""Calculate sodium activation derivative."""
return alpha_m(V) * (1 - m) - beta_m(V) * m
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def dh_dt(self, V, h):
"""Calculate sodium inactivation derivative."""
return alpha_h(V) * (1 - h) - beta_h(V) * h

def derivatives(self, t, state, I_ext=0):
"""Calculate all derivatives for the current state."""
V, n, m, h = state
dV = self.dV_dt(V, n, m, h, I_ext)
dn = self.dn_dt(V, n)
dm = self.dm_dt(V, m)
dh = self.dh_dt(V, h)
return np.array([dV, dn, dm, dh])

def simulate(self, t_span, dt=0.01, method=’euler_c’,
I_ext_func=lambda t: 0):
"""
Run simulation for given time span and external current
function.

Args:
t_span: [t_start, t_end] in milliseconds
dt: Time step in milliseconds
method: Integration method (’euler_c’, ’rk’, or
’adams_bashforth’)

I_ext_func: Function of time that returns external current
"""
# Initial conditions
y0 = np.array([self.V, self.n, self.m, self.h])

# Select integration method
if method == ’euler_c’:
integrator = euler_cromer

elif method == ’rk’:
integrator = runge_kutta

elif method == ’adams_bashforth’:
integrator = adams_bashforth

else:
raise ValueError("Method not recognized. Use ’euler_c’,
’rk’, or ’adams_bashforth’")

# Define function for derivatives with external current input
def func(t, y):
return self.derivatives(t, y, I_ext_func(t))

# Perform integration
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t, y = integrator(func, y0, t_span, dt)

# Extract V, n, m, and h from y
V, n, m, h = y[:, 0], y[:, 1], y[:, 2], y[:, 3]

# Update model states to last values from simulation
self.V, self.n, self.m, self.h = V[-1], n[-1], m[-1], h[-1]

return t, V, n, m, h

3 Verification of Program
To verify correctness of our model implementation, the simulation is compared against
several well-established behaviors of neurons:

1. Action Potential Shape and Timing: Our simulated action potentials should
show a rapid rise (depolariation) followed by a slower decay (repolarization).

2. Frequency-Current Relationship: As input current amplitude increases, the
firing frequency should increase. In addition, it should show saturation at high
current levels.

3. Step-Response Behavior: For the four specified cases, we should oberve: (1)
larger step values producing higher steps, (2) higher baseline currents resulting
in different baseline firing rates, and (3) smooth transitions between firing rates.

3.1 Action Potential Shape and Timing

(a) Membrane potential and external current
during a single action potential

(b) Gating variables during a single action
potential

Notice that the action potential generated by our model closely resembles the standard
action potential shape. The model also exhibits the expected refractory period after
firing. For reference, the standard action potential shape is shown below:
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Figure 2: Standard arbitrary action potential

3.2 Frequency-Current Relationship
Of course, the frequency-current relationship is a key aspect of neural behavior. The
model should exhibit a linear relationship between current and firing rate, with satu-
ration at high current levels. F-I Curve Figure.

It’s clear from the figure that–after an initial spike (covered more in 5.3.2)–the firing
frequency increases linearly with current, with a very slight saturation at high current
levels. This behavior is consistent with the expected behavior of neurons.

3.3 Step-Response Behavior
Finally, we examine the model’s response to step changes in current. For our valida-
tion test, we observe four cases: (1) a small step change from a low baseline current,
(2) a large step change from a low baseline current, (3) a small step change from a
high baseline current, and (4) a large step change from a high baseline current. Step
Response Figure.

As clear from the figure, the model follows the expected behavior for each case. For
small step changes, the firing rate increases slightly and then stabilizes. For large step
changes, the firing rate increases more dramatically and then stabilizes. This behavior
is especially apparent on the farmost right plots, where there is a clear frequency
increase after the step change.
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4 Data

4.1 Steady-State Visualization

Figure 3: Steady state values and time constants of the gate variables n, m, and h as a
function of membrane potential.
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Figure 4: Behavior of the model under zero external current conditions. Graphs of
membrane potential and gating variables at steady state. Notice initial changes in gating
variables and membrane potential to reach steady state.

4.2 Single Spike Analysis

(a) Membrane potential and external current
graphs, external current = Iext = 10µA/cm2

(b) Gate graphs for single action potential,
external current = Iext = 10µA/cm2
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(a) Membrane potential and external current
graphs with external current given by Iext =
1µA/cm2

(b) Gate graphs for single action potential,
external current given by Iext = 1µA/cm2

Figure 7: Minimum threshold current for action potential generation. Notice that below
1µA/cm2, the action potential is not generated. We have no rapid depolarization and
repolarization.
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4.3 Spike Train and Frequency Analysis

Figure 8: Response to sustained current injection. (Left) spike trains with current of
Iext = 10µA/cm2. (Right) spike trains with current of Iext = 50µA/cm2.

Figure 9: Firing frequency vs. current, calculated from 0µA/cm2 to 100µA/cm2 in steps
of 5µA/cm2. Curve is relatively linear with sharp rise at small current values.

Figure 10: Phase plane trajectories of the model show relationship between membrane
potential and gating variables. (Left) the V-n plane, (Middle), the V-m plane, (Right) the
V-h plane. Each represents a periodic action potential cycle. Current of Iext = 10µA/cm2
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4.4 Step Response

Figure 11: Four tests of step response with varying current levels and step sizes. In order
from left to right, top to bottom: I1 = 4µA, δI = 2µA/ms, I2 = 4µA, δI = 10µA/ms,
I3 = 8µA, δI = 2µA/ms, I4 = 8µA, δI = 10µA/ms.

5 Analysis

5.1 Numerical Accuracy
Error analysis was performed by varying the time step:

Error ≈ O(∆t) (3)

Time Step (ms) Peak V Error (mV) Computation Time (s)
0.01 0.02 0.125
0.005 0.01 0.253
0.001 0.002 1.248

Table 2: Numerical accuracy vs. computational cost

5.2 Threshold Analysis
In our study, we found the threshold for an action potential to fire to be 1µA/cm2. Al-
though this is a relatively low value, it is not outside of reasonable values for neurons
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(which can range from 0.1µA/cm2 to 10µA/cm2).

Considering our threshold figure, we can see that below 1µA/cm2, the action po-
tential is not generated. The membrane only shows a small, passive depolarization
without triggering an action potential - this is called a subthreshold response.

5.3 Spike Train, Frequency, and Phase Plane Analysis
This analysis demonstrates how neurons respond to a sustained current injection. The
spike train is visualized by plotting the membrane potential/voltage dynamics over a
100ms period. A sustained current serves as the stimulus.

5.3.1 Spike Train Analysis

The spike train analysis demonstrates the model’s ability to generate a series of ac-
tion potentials in response to a sustained current stimulus. The model exhibits the
expected behavior of repetitive firing with a frequency that increases with stimulus
intensity. The refractory period between spikes is also clearly visible in the membrane
potential traces.

Note that the model exhibits a maximum firing frequency due to the refractory
period imposed by the Na channel inactivation. This behavior is consistent with the
physiological properties of neurons. The right figure in the spike train figure exhibits
the highest firing frequency possible for the model. At currents higher than 50µA/cm2,
the model is unable to generate additional spikes due to the refractory period.

5.3.2 Frequency Analysis

To examine relationship between input current and firing frequency, we plot the firing
frequency as a function of the external current. The F-I curve shows a linear relation-
ship between current and frequency, with a slight saturation at high current levels.

The spike in frequency at low currents may appear concerning at first–but it is a
well-known phenomenon in neurons. Due to the thresold, all or nothing response of
neurons, when enough channels open to reach the threshold, a positive feedback loop
is triggered. More sodium channels open, leading to a rapid depolarization, which in
turn opens more sodium channels.

The linearization after an initial spike is due to refractory periods and membrane
properties stabilizing the system.

5.3.3 Phase Plane Analysis

Phase plane analysis visualizes the trajectory of state variables in the V-n, V-m, and
V-h planes. The phase plane figure demonstrates the periodic action potential cycle of
the model.
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V-n Plane:
The trajectory forms a loop as expected, indicating periodic behavior. At lower V

values (hyperpolarization), n is relatively small, as potassium channels are closed. As
V increases, n increases, indicating potassium channel activation. Finally, n decreases

as V decreases, indicating potassium channel deactivation.

V-m Plane:
The trajectory forms a sharper loop compared to the V-n plane, indicating faster

activation and deactivation of sodium channels. Indeed, m increases and decreases
rapidly with V, indicating fast sodium channel activation. This is what allows the

rapid depolarization of the action potential.

V-h Plane:
Finally, the V-h plane shows a loop with h decreasing during depolarizaiton and
increasing during repolarization. Notice h is at its maximum (near 1) when V is

hyperpolarized, indicating sodium channels are ready to open. During
depolarization, h decreases, indicating sodium channel inactivation and further

limiting sodium influx.

5.4 Step Response Analysis
Considering the step response figure, we can make several observations:

• For small step changes, the firing rate increases slightly and then stabilizes. This
is due to the slow inactivation of the sodium channels, which limits the firing
rate.

• For large step changes, the firing rate increases more dramatically and then
stabilizes. This is due to the rapid depolarization caused by the large current
step, which triggers a higher firing rate.

• The model exhibits smooth transitions between firing rates, indicating that the
system is stable and well-behaved.

• The model’s behavior is consistent with the expected response of neurons to step
changes in current, demonstrating the model’s ability to capture key neurophys-
iological phenomena.

6 Interpretation, Future Work, and Discoveries

6.1 Interpretation
The results of this research confirm the robustness of the Hodgkin-Huxley model in
capturing key neurophysiological phenomena. The model accurately reproduces the
dynamics of membrane potentials and ion channel behaviors under various stimuli,
including action potential generation, threshold behavior, and spike train dynamics.

Our analysis shows that the threshold for an action potential to fire in this simula-
tion is around 1µA/cm2. Below this threshold, the membrane potential only shows a
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small, passive depolarization without triggering an action potential (subthreshold re-
sponse). This is a critical property of neurons, as it allows them to selectively respond
to specific stimuli.

The spike train analysis demonstrates that the model generates a series of action
potentials in response to a sustained current stimulus. The model exhibits the expected
behavior of repetitive firing with a frequency that increases with stimulus intensity.
The refractory period between spikes is also clearly visible in the membrane potential
traces.

The frequency analysis shows a clear linear relationship between input current and
firing frequency, and a standard spike in frequency at low currents.

Finally, the step response illustrates how the model responds to abrupt, step
changes in current. The model exhibits the expected behavior of a stable system:
for small step changes, the firing rate increases slightly and then stabilizes, while for
large step changes, the firing rate increases more dramatically and then stabilizes. The
model’s smooth transitions between firing rates indicate that the system is stable and
well-behaved.

6.2 Future Work
• Non-Invasive Anesthesia: Main research interest involving studying possible

alternative methods for anesthesia that do not involve drugs. This could involve
studying the effects of electrical stimulation on neural activity and developing
computational models to predict the response of neurons to different stimuli.

• Network Effects: Investigate the effects/behavior of multiple interconnected
neurons and how they interact to produce complex neural activity patterns.

• Stochastics and Noise: Introduce stochastic elements into the model to study the
effects of noise on neural activity and how it influences the generation of action
potentials.

6.3 Learned Concepts
• Modeling: Learned how to model complex systems using differential equations

and numerical simulations.
• Simulation: Developed skills in numerical simulation techniques, including

Runge-Kutta methods and phase plane analysis.
• Analysis: Gained experience in analyzing complex systems and interpreting

simulation results.
• Programming: Improved programming skills in Python, including object-oriented

programming and data visualization.
• Neuroscience: Gained insights into the fundamental mechanisms underlying

neural signal propagation and the relationship between stimulus characteristics
and neuronal response patterns.
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